
Debugging
Techniques for Drupal

TexasCamp 2016
https://www.texascamp.org/sessions/debugging-techniques-drupal-and-other-web-

applications
Rob Ristroph

Technical Architect, Acquia
@robgr

History
● My first Drupal Camp talk (in Dallas!)
● Given numerous times after that
● Dustin Younse (https://2015.badcamp.net/session/debug-drupal-devel-

xdebug-more), Allan Chappell (General Redneck) http://generalredneck.
com/sites/default/files/static-content/drupal-corn-2013-debugging-drupal/#/
have given versions of this talk

● You can too -- spice it up with some personal stories and give it to meetup
group

https://2015.badcamp.net/session/debug-drupal-devel-xdebug-more
https://2015.badcamp.net/session/debug-drupal-devel-xdebug-more
http://generalredneck.com/sites/default/files/static-content/drupal-corn-2013-debugging-drupal/#/
http://generalredneck.com/sites/default/files/static-content/drupal-corn-2013-debugging-drupal/#/

Outline
1. What is a Bug
2. What is Debugging
3. Why it is Important
4. “Scientific Method” Approach
5. Toolbox
6. Other tricks
7. More reading

What is a Bug
Your mental model of the code and it’s actual
behaviour don’t match.

Usually you typed code that you thought did one thing and
in fact it did another - most of the bugs you work on are
your own.

Difference from “troubleshooting”

What is a Bug - A Divergence on Origin

https://en.wikipedia.org/wiki/Software_bug#Etymology

Debugging is the Process of
Making Your Mental Model
Match Reality
● Understanding WHY the bug happened is different from

fixing it

Why is Debugging Important ?

You spend more time debugging than you do
programming. Furthermore the time
debugging is much harder to estimate.

Why is Debugging Important ?

“As soon as we started programming, we found to our
surprise that it wasn't as easy to get programs right as we
had thought. Debugging had to be discovered. I can
remember the exact instant when I realized that a large part
of my life from then on was going to be spent in finding
mistakes in my own programs.”
--Maurice Wilkes, 1949, developing the first
stored program computer

Why is Debugging Important ?

● You do it more than you realize.
● It’s the source of much uncertainty in

estimating and delivery.
● As a distinct thought process / skill, it is

possible to become good and more efficient
at it.

“Scientific Method” Approach

1. Observe (collect data, as much as possible)
2. Make a testable Hypothesis (change to your

mental model)
3. Collect data from the test
4. Adjust understanding (model), goto 1

What Exactly is Broken ?
● Is something not showing up ?

○ New content - is it published ? Front end cache ?
○ Old content - permissions set properly, or changed ?

● Is something showing up that shouldn’t ?
○ Raw html or javascript in a wysiwyg field ?

● A more complex behavior - workbench or etc - can we state exactly the steps
to cause the bug, and why it’s not what we expect ?

Note - non technical members of your team have huge impact collecting data at
this stage.

Replicate the Bug
● User reports matter
● Worst case is making changes, waiting to see if the customer reports the

problem is still there
● Replication can be tedious, but extremely valuable
● Observe and think about your user's operating procedure
● Without being able to replicate the bug, you can't debug.

Sometimes figuring out how to replicate the bug is 99% of fixing it.

Work From the Bottom Up
● Log files

○ Know where they are on your systems / environments
● multitail

○ Linux / Mac utility to easily view logs, with more
options

● Contextual information - browsers, environments, users

Vacuum up as much information as possible in
the first stage.

Where is it Broken ?
● Custom Module
● Theme template.php
● Theme template
● Configuration in database

Potential tests - disable modules, switch themes, re-install clean without live data.

Divide-and-conquer by narrowing down where
the mental model breaks.

Debugging as Scientific Method
Iteration

● Change ONE thing at a time
● Test that change
● Repeat - Undoing the change if it gave no information

Better debuggers are generally better at thinking of clever changes and tests.

● “Cheap” tests first (clear caches, etc)
● Test for common problems first
● A good test should narrow the problem scope by eliminating something

Git is your friend
● Save your progress as you work

○ Re-create your Features
○ Quickly un-do unhelpful changes
○ Makes Rabbit Holes manageable

Better debuggers generally take notes and keep a log.

Always undo experiments as you work (reload DB, etc).

Git diff is your friend
● Remove debug statements
● Ensure you only changed as much as needed

“Database diff” -- hard but dumping “drush vget” can help.

Configuration in files (Features, D8 yml files) help enormously.

Better debuggers generally take notes and keep a log.

Git blame is your friend
● Who wrote (committed) offending code
● Should NOT be a witch hunt
● Should be a chance to understand the context of the code

○ Re-reading the old Jira tickets or other requirements can cause you to
re-assess everything

Find the context of the code where the problem
is.

Use “git annotate” in politically sensitive situations.

Make the Future Easier
● Watchdog (D7)
● \Drupal::Logger() (D8)
● syslog module
● http://loggly.com
● Write a test !

Thoughtful instrumentation of your code as it’s written the first time can massively
pay off later.

Inspection Tools
● Backend - watchdog(), print(), dsm()
● XDebug - have configured in advance
● Frontend - learn the browser dev tools

○ Javascript step-by-step debugging
○ Asyncronicity issues are more common

Sophisticated tools should be set up beforehand, and used in development as
well as debugging.

Generally, structured approach and thinking about tests / hypotheses pays off
better than fancy tools.

“Interaction” Bugs are the Hardest
The hardest bugs are those that only appear when two “bug free” components
interact.

● Module weights, order of hook operations
○ Systematically disable modules, change weights

● Theme / module interactions
● External service requests

If your problem resists divide-and-conquer, maybe it’s not in one component or
the other, but in how they connect.

Performance Related Debugging
● Just like other debugging:
● Replicate the problem ! Otherwise you flail at random

○ Apache bench (ab), wget spiders, load generators
● Add headers, log statements, to indicate cache hits /

misses
● Different logs often apply - mysql or system logs

Further Reading (and free book!)
“Debugging: The Nine Indespensible Rules” by David J.
Agans
http://www.debuggingrules.com/

1. Understand the System
2. Make it Fail
3. Quit Thinking and Look
4. Divide and Conquer
5. Change One Thing at a Time
6. Keep an Audit Trail
7. Check the Plug
8. Get a Fresh View
9. If You Didn't Fix It, It Ain't Fixed

http://www.debuggingrules.com/
http://www.debuggingrules.com/

Conclusions
● Thinking strategically is more important than applying

fancy tools
● The hardest bugs are “Interaction” bugs

Finally . . .

Debugging can be hard to tell someone how to do, but it can
be learned if you persist and think about it. Level up !

Debugging
Techniques for Drupal

TexasCamp 2016
https://www.texascamp.org/sessions/debugging-techniques-drupal-and-other-web-

applications
Rob Ristroph

Technical Architect, Acquia
@robgr

