

Automating website QA with
Quotemine

 Open Source Web Crawler

Michael Nolan, PhD
Cerium Software LLC

Today's Topics

● What is Quotemine?
● QA with QuoteMine

– Setting up your tests

– Site Health: Broken Links/Site Structure

– Regex searches

– Caching/SEO

– Load Testing / Continuous monitoring

● Future work and additional use cases

What is Quotemine?

● Python Web Crawler
– Uses Requests, LXML, BeautifulSoup

– Systematically crawls all pages in a domain

● Main crawler is pluggable
– Add/remove/config plugins as needed

● Basic report generation
– CSV reporting tool to perform basic categorization

and statistics

Quotemine's history

● Pre-Quotemine: Work at ReachLocal
– QA scripting for company websites & forms

– International SEO

● First development and use
– Content replacement on erc-assoc.org

– “Which 70 of 2,300 pages have this name?”

● Open Source Project
– Launched Dec. 29, 2015

– Media coverage & sentiment study

Quotemine hook system

Miner step Hooks

Import/Load Process

Postprocess

Mine

Preprocess

Process

Postprocess

Process URL Parse

Postprocess

Process Data Process

Generate Reports

Preprocess

Process

Postprocess

Export/Save data

Preprocess

Process

Postprocess

Reset Data

Quotemine PageParser hooks

Parser Step Hooks

Parse document Parse Tag

Parse data in tag

Quotemine Data Examples

EPA.gov linkmap

Quotemine Data Examples

Quotemine Data examples

QA with Quotemine

● Quotemine is primarily a content analyzer
– Examines client-side content

– Cannot see orphaned content, PHP code
● Combine with New Relic, etc.

● Custom plugins
– Analyze request

– Combine with Selenium/Ghost.py to execute JS

– Send content to 3rd party API for storage/analysis

– Make additional GET and POST requests

Setting up your QA project

What are you looking for?
● Broken Links
● Content/URLs that shouldn't be exposed
● Hard-to-find pages
● Slow/uncached pages
● Background process load

Quotemine workflow

● Build URL list
– Manual feed homepage or load save file/template

● Crawl site
– Grab metadata, load performance, content of interest

● Generate reports
– CSV output of all data by URL/revision
– Category reports with CSVManager

● Export Save file

Broken/exposed links

● Miner Core
– Gets HTTP status of links

● LinkFilter
– Link discovery engine; finds and categorizes URLs

– Determines click depth

– Generates a structure map of URLs by section

● SiteMapper
– Generates visualizations of site structure

– Maps click depth and gateway pages

Exposed Content

● Miner Core
– Grabs text from each request for analysis

● TextAnalyzer
– Can parse all words into word counts/densities
– Regex-based searches of tag content or full pages

● SentimentAnalyzer
– Feeds content to IBM Watson API

● AuthorFilter/DateFilter
– Purpose built for extracting page author/post date

Hard-to-find/should-be-hidden pages

● Miner Core
– Logs redirects

● LinkFilter
– Lists all found URLs, and pages on which they are

located

– Also reads links in metadata (i.e. short form)

Slow pages

● Miner Core
– Logs page load times

– Use repeat_mine() to test caching

● HeaderFilter
– Reads request headers

– Useful for grabbing Drupal and Varnish Cache
Information

● Pair with Charles Proxy for more load info

Slow processes

● Pair QuoteMine with New Relic
– QuoteMine mimics anonymous user behavior

– Use multiple instances to increase load

● Linkfilter configuration
– Limit allowed URLs to specified site sections

– Include/exclude URLs by type
● Internal, External, and File type URLs

Continuous Monitoring

● repeat_mine() function
– Repeat runs on an interval basis

– Optionally break reports into time periods

– Tweak timings to maintain continuous monitoring for
extended periods

Additional Use Cases

● Content scraping and analysis
– News topic coverage

– Mapping topics to authors

– Sentiment analysis

● Web-based databases
– Pull down online databases which don't have a

download option

Future Work

● Ghost.py/Selenium integration
– Execute JS to load dynamic content

– Screen capture

– Interact with content (test forms/AJAX)

● Expanding BeautifulSoup integration
– Use CSS selectors instead of traversing HTML

structure

Thank you for your time!

● My email
– mike@ceriumsoft.com

● QuoteMine repo:
– http://bit.ly/cerium-quotemine

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

