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Today's Topics

● What is Quotemine?
● QA with QuoteMine

– Setting up your tests

– Site Health: Broken Links/Site Structure

– Regex searches

– Caching/SEO

– Load Testing / Continuous monitoring

● Future work and additional use cases



  

What is Quotemine?

● Python Web Crawler
– Uses Requests, LXML, BeautifulSoup

– Systematically crawls all pages in a domain

● Main crawler is pluggable
– Add/remove/config plugins as needed

● Basic report generation
– CSV reporting tool to perform basic categorization 

and statistics



  

Quotemine's history

● Pre-Quotemine: Work at ReachLocal
– QA scripting for company websites & forms

– International SEO

● First development and use
– Content replacement on erc-assoc.org

– “Which 70 of 2,300 pages have this name?”

● Open Source Project
– Launched Dec. 29, 2015

– Media coverage & sentiment study



  

Quotemine hook system

Miner step Hooks
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Postprocess

Mine
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Quotemine PageParser hooks

Parser Step Hooks

Parse document Parse Tag

Parse data in tag



  

Quotemine Data Examples

EPA.gov linkmap



  

Quotemine Data Examples



  

Quotemine Data examples



  

QA with Quotemine

● Quotemine is primarily a content analyzer
– Examines client-side content

– Cannot see orphaned content, PHP code
● Combine with New Relic, etc.

● Custom plugins
– Analyze request

– Combine with Selenium/Ghost.py to execute JS

– Send content to 3rd party API for storage/analysis

– Make additional GET and POST requests



  

Setting up your QA project

What are you looking for?
● Broken Links
● Content/URLs that shouldn't be exposed
● Hard-to-find pages
● Slow/uncached pages
● Background process load



  

Quotemine workflow

● Build URL list
– Manual feed homepage or load save file/template

● Crawl site
– Grab metadata, load performance, content of interest

● Generate reports
– CSV output of all data by URL/revision
– Category reports with CSVManager

● Export Save file



  

Broken/exposed links

● Miner Core
– Gets HTTP status of links

● LinkFilter
– Link discovery engine; finds and categorizes URLs

– Determines click depth

– Generates a structure map of URLs by section

● SiteMapper
– Generates visualizations of site structure

– Maps click depth and gateway pages



  

Exposed Content

● Miner Core
– Grabs text from each request for analysis

● TextAnalyzer
– Can parse all words into word counts/densities
– Regex-based searches of tag content or full pages

● SentimentAnalyzer
– Feeds content to IBM Watson API

● AuthorFilter/DateFilter
– Purpose built for extracting page author/post date



  

Hard-to-find/should-be-hidden pages

● Miner Core
– Logs redirects

● LinkFilter
– Lists all found URLs, and pages on which they are 

located

– Also reads links in metadata (i.e. short form)



  

Slow pages

● Miner Core
– Logs page load times

– Use repeat_mine() to test caching

● HeaderFilter
– Reads request headers

– Useful for grabbing Drupal and Varnish Cache 
Information

● Pair with Charles Proxy for more load info



  

Slow processes

● Pair QuoteMine with New Relic
– QuoteMine mimics anonymous user behavior

– Use multiple instances to increase load

● Linkfilter configuration
– Limit allowed URLs to specified site sections

– Include/exclude URLs by type
● Internal, External, and File type URLs



  

Continuous Monitoring

● repeat_mine() function
– Repeat runs on an interval basis

– Optionally break reports into time periods

– Tweak timings to maintain continuous monitoring for 
extended periods



  

Additional Use Cases

● Content scraping and analysis
– News topic coverage

– Mapping topics to authors

– Sentiment analysis

● Web-based databases
– Pull down online databases which don't have a 

download option



  

Future Work

● Ghost.py/Selenium integration
– Execute JS to load dynamic content

– Screen capture

– Interact with content (test forms/AJAX)

● Expanding BeautifulSoup integration
– Use CSS selectors instead of traversing HTML 

structure



  

Thank you for your time!

● My email
– mike@ceriumsoft.com

● QuoteMine repo:
– http://bit.ly/cerium-quotemine
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